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Equations are derived to describe the far-field laminar wake behind a body in incompressible fluid flow with an arbitrary distribution 
of the free-stream (unperturbed flow) velocity. For certain classes of free-stream flows, analysis of these equations enables various 
processes in narrow wakes or jets to be described (the interaction of the longitudinal transverse velocity components in a jet, 
cause it to accelerate or decelerate and conservation of the energy of the wake by distortion of its trajectory regardless of viscous 
dissipation). In particular, conditions are obtained for the wake growth in spiral flows, analogous to the Rayleigh conditions for 
the instability of two-dimensionally radially symmetric flows relative to three-dimensional short-wave perturbations. © 1998 Elsevier 
Science Ltd. All rights reserved. 

Mathematically speaking, the hydrodynamic problems under consideration are characterized by the 
presence of a small parameter e--the ratio of the characteristic transverse scale to the longitudinal scale 
The equations derived and investigated below determine the principal term in the asymptotic expansion 
of the solution of the Navier-Stokes equations in terms of this small parameter. It is assumed that the 

the ratio of the traverse components of the velocity to longitudinal component is also small (of the order 
of e), as is the viscosity coefficient (of the order of eL--if the viscosity is appreciable, it instantaneously 
destroys the wake). 

A scheme for constructing such asymptotic expansions was proposed in [1], based on an analysis of 
the resonance properties of the Navier--Stokes equations (cf. [1-5]). This scheme has been implemented 
for the equations of magnetohydrodynamics [6-9], producing equations that describe the asymptotic 
behaviour of localized fields in a plasma; these equations have already been derived for the case of a 
cylindrically symmetric pinch [10]. Some of the phenomena studied below in laminar wakes have 
analogies in plasma physics; for example, the interaction of the longitudinal and transverse velocity 
components in the wake is analogous to the Shafranov-Pustovitov effect (the interaction of the longi- 
tudinal and transverse components of the magnetic field in a plasma filament, see [9, 11]). 

1. D E R I V A T I O N  O F  T H E  E Q U A T I O N S  D E S C R I B I N G  
A L A M I N A R  W A K E  

Consider the steady flow of an incompressible fluid. The velocity field v(x) satisfies the stationary 
Navier-Stokes equations 

(v, V)v + Vp = l ~ v ,  (V, v) = 0 (1.1) 

where p(x) is the pressure in the fluid and Re is the Reynolds number. Given a free-stream flow V(x), 
we wish to study perturbations of the flow with the following properties: 

1. the perturbations are small, that is, the velocity field v differs only slightly from the free-stream 
velocity field V; 

2. the perturbations are localized in a small neighbourhood of a certain curve ~,in three-dimensional 
space. 

We introduce a small parameter e characterizing the ratio of the width of the aforementioned 
neighbourhood to the characteristic scale of variation of the free-stream velocity field V(x). Conditions 
1 and 2 mean that we are studying solutions of Eqs (1.1) that possess the following properties 
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v - V  
l i m ( v  - V )  = O, lira - -  = 0 
s-}O ~-~0 E 

for all x at a finite distance p > 0 (independent of e) from y. 
Such solutions satisfy specially chosen boundary conditions for Eqs (1.1). Let us consider an arbitrary 

surface F transverse to the field V. Suppose it is defined in R 3 by the equations x = r(oQ, where ct = 
(ix1, ix2) are coordinates on F and r((z) are smooth functions such that the vectors Or/&xl, Or/O(x2, V are 
linearly independent at all points of F. Choosing smooth functions S°(a)  (j = 1, 2) on F, we assume 
given, as boundary conditions on the surface, a small perturbation of  the free-stream velocity field 
localized near a point {xo at which these functions vanish 

vl r = V + ell 0 e 

where Uo(yl, Y2 ix) is a smooth vector-valued function that decreases rapidly as I Y I ~ ** ~ = ~//e) 
. . . .  J 

This specification of conditions (1.2) has the following meaning. It is assumed that a narrow wake is 
formed in the fluid, the velocity field of the perturbation being known in a certain area element transverse 
to the free stream. The problem is to describe the changes in the wake due to the flow as the distance 
upstream from the area element increases. Thus, we shall seek a solution of problem (1.1), (1.2) in the 
half-space bounded by the surface F. 

We will seek the solution of problem (1.1), (1.2) in the form 

v(x,~)= V° (x,~) + ~u( Sl ~ ) , S2~X) ,x )+... 

+-- ( St(x) , S2(X) ,xl+ e2nf S,(x) S2(X),x)+.." (1.3) 
P(X,e)=P0 ~'0(, e e / \ e ' 

where V ° is a smooth vector field (the non-decreasing part of the solution), Po is the pressure corres- 
ponding to the field V °, the functions U(yl,y2, x), n(Yl, y2, x), no(Yl, yz, x) decrease l Yl ~ ** more quickly 
than I Y 1-1, and the functions Sj(x) vanish on a curve 7 (which is not known in advance); the vectors VS1 
and VS2 are linearly independent. Throughout, y is the two-dimensional vector of "stretched" variables 
yj = Sj/e. As already remarked (see above), the wake can only exist if the viscosity is sufficiently small; 
we therefore assume that Re -1 = e2v, v = O(1) in (1.1). 

Substituting (1.3) into (1.1) and considering the resulting equation outside a neighbourhood of y 
independent of  e, we obtain ~ = V + o(e) (since we will be investigating asymptotic expansions with 
the same accuracy, we will assume throughout that V ° = V). We now equate the coefficients of each 
power of  e to zero in the remaining terms. 

For e ° we obtain 

Z (v, vsj)?-E+vsj Z (u, vs )=0 (1.4) j=, oyj 

Multiplying the first (vector) equation in (1.4) by VS1 and VS2, we have 

: V /)uk V ~ o  2 ~uj Y. (V, Sj) +(VS k, Sj) =0,  k = l , 2 ;  Z = 0  (1.5) 

where uj'= (U, VSj). Differentiating the first equation in (1.5) (k = 1) with respect toy1 and the second 
with respect to Y2, adding them and taking the third equation into consideration, we get 

2 2 

D2UOE Z (VSj,VSk)~'~z~ Uo =0 
j,k=t oy joYk 

Since this equation is elliptic and n0 decreases at infinity, it follows that r,o = 0 and we deduce from 
(1.5) that 

(Y, VS/) = 0 (1.6) 
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It follows from (1.6), in particular, that the curve "t (on which S 1 = S 2 = 0 )  is a streamline of  the 
field V. 

We will now consider the equations obtained by equating the coefficient of e x to zero. Using (1.6) 
and the fact that rto is zero, we deduce from the first (vector) equation of (1.1) that 

vO2U (v, v )u  + (u, v )v  + Z (u, vsj) + vsj = 
j=l 

(1.7) 

where V is the gradient with respect to the "slow" variables x with y held constant. Putting w = (U, V), 
using (1.5) and the identities 

(vsj .(v.  v)u)  = (v. v) , j  - (v . (v .v)vs / )  

aV, 
(v. v)vsj  = v(v.  v s j ) -  vsj = - ax 

(v. (v. v )u )=  (v. V)w- (u. (v. v )v )=  (v. V)w- (u.~;v v )  

2 wV 
U =  Z (T-l)ijuiVSj + 

i,j=l ~ - ~  

(1.8) 

where aV/ar is the 3 x 3 matrix with elements aVdOxj (av*/ox denotes the transpose), and T is the 
2 x 2 matrix with elements (VSi and VS/), we deduce from (1.7) and (1.5) equations for the perturbation 
U = (Ul, U2) ,W 

d + (u, Vy)u = -TVyx + vD2u - A T-~u - aw, (Vy, u) = 0 (1.9) 

Ib + (U, Vy)w  = vD2w - (T-lb, u) 

where V r is the gradient with respect to y, u = ( V ,  V)u(w = (V, V)w), and the elements of the 2 x 2 
mat r ixAand  the vectors a and b are defined by 

Aij = 2(VSi, ~xx VSj ] 

2 (vs 
aj=~--f[. J'~x J' 

We have thus proved the following theorem. 

Theorem. Let the vector field V, the curve T and the functions S 1 satisfy the following conditions: 
1. V(x, e) is a smooth vector-valued function of (x, e), which, as I x I ---> **, tends to a vector V0(e) in 

such a way that all the derivatives of  V with respect to xj tend to zero, and which satisfies Eqs (1.1) in 
R 3 mod o(e). 

2. T is a smooth non-self-intersecting trajectory of V which departs to infinity, and I V IIv 1> 8 > 0. 
3. Sj(x) are smooth functions, VS1 and VS2 are linearly independent in R3, VSj ----> kj = const as 

Ixl ---> ~, all the higher-order derivatives of Sj tend to zero S/Iv = 0 and Eqs (1.6) hold in some 
neighbourhood f~ of  7, independent of  e. 

Let u(y, x), w(y, x), 7r(y, x) be a smooth solution of system (1.9) for y • R 2, x • f~, satisfying the 
conditions limlyl__~[ u I = limlyl--~.l w 1, extended continuously to R 2 x R 3 in such a way that 
w ---- 0 in a neighbourhood of  the singular points of the field V(x); let u(y, x) be a smooth two- 
dimensional vector-valued function that decreases as I Y I ---> ~ and satisfies the following equality 
in 

(Vy, il) = - (V,U)  

(the function U(y, x) is defined by (1.8)). Then the vector-valued function 

(1.10) 
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V(x 'e)+ su(S'(ex)'  S2(X) "x)+ e2fi( Sl~ )'' S2(x) 'x e 

satisfies Eqs (1.1) in R 3 mod o(e). 

Remarks. 1. It follows from the theorem that the construction of an asymptotic solution of problem 
(1.1), (1.2) reduces to solving a Cauchy problem for system (1.9). Indeed, let ~/be a trajectory of V 
emanating from a point ~ on F. A solution of Eqs (1.6) that satisfies the condition Sjlr = ~ has the 
form Sj(x) = ~(a(x)) ,  where a(x) is the point at which the streamline of V passing through x intersects 
the surface F. In other words, if X(tx, t) is a solution of the system of ordinary differential equations 

dX/dt = V(X), X(0) = r(a) 

then or(x) is found from the equations 

X(ot, t) = x (1.11) 

Now let u(y, {x, t), w(y, cz, t) be the solution of the Cauchy problem for system (1.9) with initial data 

ul~o = u°(y, a),  wlr_o = w°(Y, ix) (1.12) 

Then, obviously, the vector U constructed from the functions u(y, tx(x), t(x)), w(y, ix(x), t(x)) (see 
(1.8)) defines a perturbations of the field V that satisfies conditions (1.2). Here a(x) and t(x) denotes 
a solution of system (1.11) (t(x) is the time in which the trajectory of V emanating from the point tx(x) 
on the surface F reaches x). 

2. The first equations of system (1.9) recall the two-dimensional stationary Navier-Stokes equations, 
with additional "forces" which depend linearly on the velocities; the last equation is similar to the heat 
conduction equation. 

3. We say that a function u (x, e) satisfies system (1.1) rood o(e 2) if a function p(x, e) exists such that 
I (u,  V)u + V/~ - Re -1 Au I = o ( ~ )  I (V, u )  I = o(ek). 

4. Since I U I = o(1) outside the domain f~, it will suffice to require that Eqs (1.9) hold in R E × ~ ,  
rather than in all of R J. 

5. Equality (1.10) guarantees that the coefficient of e I in the expression (V, v) in (1.1) will vanish. 
6. To determine the asymptotic behaviour of the solution of problem (1.1), (1.2) to within o(e), it 

will suffice to consider as the flow V a vector field satisfying Eqs (1.1) to within the same accuracy. In 
particular, as the viscosity coefficient in (1.1) is O(e 2) and V is a smooth function of e, the field V may 
be defined everywhere as a smooth solution of the Euler equations. Such flows will indeed be considered 
below as examples. 

2. I N V E S T I G A T I O N  O F  T H E  E Q U A T I O N S  O F  A L A M I N A R  W A K E .  
T H E  O S E E N  A P P R O X I M A T I O N  

We will now investigate the behaviour of the solutions of system (1.9) in the linear approximation. 
Dropping non-linear terms in (1.9) (i.e. assuming that the perturbation is small compared with e), we 
obtain 

6+AT-lu+aw+TVyx=vD2u, (Vy,U) = 0 

+ (T-lb, u) = vD2w 
(2.1) 

The evolution with respect to t (i.e. along a streamline 7) of solutions of this system depends on the 
structure of the matrices A and T and the vectors a and b, this structure may differ for different types 
of free-stream flow V. 

In the simplest case--a constant flow V = (0, 0, V0), V0 = constmsystem (2.1) reduces to the parabolic 
equations 

li=VAyU, w=vAyw (Vy,U)=0 (2.2) 

whose solutions with initial data (1.12) have the following form (throughout, unless otherwise stated, 
integration will be performed over the whole space R 2) 
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1 , 2  u(y,~,t) = -:----Su O(y',cQexp[-(y. ~ ) ,]d2y" 
4~t L 4Vt j 

w(y, oc, t)= 1---~-Jw°(y',o0ex ['-(y-y')2]d 2 , 
4~vt PL J y 

Suppose that the surface F is the plane x3 = 0, and that Sjlr = xj (j = 1, 2). Then, obviously, Sj(x) = 
xj, t(x) = xa/Vo. Thus the perturbation (wake) has the form 

o - -  ,o.. 0,=,r 
Equations (2.2) and formula (2.3) are well known in the theory of a laminar wake (the Oseen 

approximation). It follows from (2.3), in particular, that the amplitude of the perturbation U decreases 
as x 3 increases (owing to the viscosity). 

The next two sections are devoted to investigating the evolution of the perturbation U in the linear 
approximation (i.e. the behaviour of the solutions of system (2.1) as t ~ 0o) for more complicated flows, 
and to discussing the physical corollaries. An analogous analysis in the unsteady problem, describing 
the evolution of a narrow "peak" concentrated in the neighbourhood of a single point, has already been 
carried out [12-14]. 

For the rest of our calculations, it will be convenient to rewrite (2.1) as a system of equations in two 
unknown functions, w and ¥(y, a, t), related to u by the formulae u 1 = - " / 3 ¥ / 0 y 2 ;  U 2 = iO¥/Oyl (iv is the 
stream function of the two-dimensional flow n). Substituting the last formulae into (2.1), changing in 
these equations to Fourier transforms with respect to y and evaluating the scalar product of the first 
equation by the vector T-tn ' (n = (k2, -kx), where kj are variables due to yj and the prime denotes 
transposition), we obtain a system of ordinary differential equations 

d~ + (T-In, AT-in).  + (a, T-in) ~, v 'k Tk'" 
at (n,7"-in) ~ (n, Tqn) = -  ( ' )¥  (2.4) 

d~t +(b,T_tn)~ =-V(k, Tk)#, k = (kt,k2) 
dt 

where ~(k) and w(k) are the Fourier transforms of ¥(y) and w(y), respectively. Let w(k, ~ t), w(k, ec, 0 
be a solution of system (2.4) with initial data 

~1,=0 = ~0(k ,a ) ;  ~1,_-0 = ~0 (k ,  ct) (~0 = ~0n)  (2.5) 

Then the solution of system (2.1) with initial data (1.12) will be 

! 0,0y, 
u(y ,~ ,  t) = - i  - ~ / ~Yi 

w(y,~, t) = 2-~ Ie;(k'Y)~'(k' ~'t)d2k (2.6) 

Thus, to determine the evolution of the perturbation U, one has to solve system (2.4) and then evaluate 
the integrals (2.6). 

3. FLOWS WITH S T R A I G H T  S T R E A M L I N E S .  I N T E R A C T I O N  
OF L O N G I T U D I N A L  AND T R A N S V E R S E  C O M P O N E N T S  

OF THE V E L O C I T Y  IN THE WAKE 

Unidirectionalflows. Let the free-stream flow be V(x) = (0, 0, Vo(xl,x2)). The streamlines are straight 
lines parallel to the x3 axis, the velocity of motion of the fluid particles varies from line to line. Let y 
be the streamline Xl = x2 = 0, and let F be the plane x3 = 0. Let ~ = x, then, obviously, Sj(x) = xj. 
Elementary calculations give 
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[ ,  2]2 
u ( y , x ) =  Vo(XL)~Uo(Y )exp -4---~x3 ( y - y )  d y 

4/~'Vx 3 

w(y, x ) =  V° (x±) I wo(y ' )exp[-  .V--~-° (Y - y,)2 ]d2y, _ (3.1) 
4~/X3 L 4vx3 

o(Y-Y ) -l~a2 o dz~ d2y "(u(y''x±'z)'V(V~))4x.v(x 3 - z) exp - 4v(x 3 - z) Xx = (xl 'x2) 

The last term describes the influence of the transverse components of the velocity in the wake (u) 
on the longitudinal component  (w). This influence--acceleration or deceleration of the jet---occurs 
because the velocity of motion of the fluid particles may differ on different streamlines of the free-stream 
flow V. It is indeed obvious from (3.1) that transverse circulations in the direction of increasing velocity 
of the fluid particles ((u, V)V 2 > 0) slow down the jet, while circulations in the direction of decreasing 
velocity ((u, V)V02 < 0) speed it up. Note that the whole perturbation is damped as x3 --> oo because of 
viscosity, while, since (Vy, Uo) = 0, the transverse component u of the velocity decreases as 1/~.  

Plane-parallel flows with variable direction. Let the free-stream flow have the form V = (Vl(X3), 
V2(x3), 0). The streamlines are straight lines in the horizontal planesx3 = const; the flow direction changes 
from plane to plane. Let F be a plane passing through thex 3 axis and cutting the planex3 -- 0 in a straight 
line orthogonal to the vector V(0). The equations of this plane are x3 = cq, Xll = W(Ctl)(Z2, where 
Xll = (xl, X2), W(X3) = (V2(x3), -VI(X3)). Let the streamline y be the straight line x = V(0)t, and define 
the functions S o as S°1 = vZ(ctl)(X2; ~2 = a. Trajectories of the field Vemanating from the plane F have 
the form X I I = VII( th; t + W((zl)(~2, x3 = cq. The calculations lead to the following solution of the first 

equation in (2.4) 

~(k,  ct, t) = ~o(k, oO [kl(VIl'W')t+l¢2 + tx2kl(V'V')]2 + V2k12 
[k 2 + a2kl(V,V')] 2 +V2k? × 

×exp - v  V2k~t+ 3kl(Vu,W,)((kloc2(V,V')+k2 +kl(V,,,W')t) 3 - ( k l ~ 2 ( V , V ' ) + k 2 )  3) 

Easy but cumbersome evaluations of the integrals (2.6) now show that the transverse components 
of the perturbations are 

2 l 
U z =  Y. (T-I)ijui(VS/)=O'-~ as t--->oo 

i,j=l 

Thus, the perturbation decreases as t ---> oo more slowly than for unidirectional flows, i.e. change of 
the flow direction obstructs viscous damping. 

Finally, let us consider the interaction of the longitudinal and transverse components of the velocity 
in such flows. The equation for w is 

fi,_vD2w=_(u,T_lb ) (V,V') =_U3 0 lnlVI 
= _  V-------T-- u2 ~x 3 

Thus, if the transverse circulations in the jet are in the direction of increasing I V I, the jet will slow 
down; otherwise the jet will accelerate, just as in the case of unidirectional free-stream flows. 

4. S P I R A L  FLOW. E N E R G Y  J U M P  IN T H E  WAKE.  T H E  A N A L O G U E  OF 
R A Y L E I G H ' S  I N S T A B I L I T Y  C O N D I T I O N  

Let us consider the evolution of a laminar wake in a free-stream flow 
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where er, %, ez are unit vectors of a cylindrical system of coordinates. The streamlines of this field are 
spiral curves 

xl = r c o s ¢ o ( t - t o ) ,  x2 = r s i n t o ( t - t o ) ,  z=o~t  + Zo 

(r = const on the trajectories). Equation (1.6) in cylindrical coordinates 

~s~ + i  ~s~ =o 
3z r o 3~p 

has the general solution Si = Oj(r, ~p - z/ro), where Oj(r, ~p) are arbitrary functions. Let us assume that 
these functions depend on only one variable, so that S~ = ~l(r),  $2 = O2(¢P-z/r0), where ~j are smooth 
functions, ~;  # 0 in ~.  Calculating the coefficients in Eqs (2.4), we obtain 

where 

d _ 2~to~r~ d ~+ 2h~a,;  ~ =_k2o,~ 
~7 v -  ro~k2;~ ~ ' = - k ~ ,  ~; 

k 2 k? ~ = r ~ 2 + l o x 0 , ( r 2 + r 2 ) ,  k2~2_ '~2 , 
2 - ~;2 ~2  (r-2 + r0-2) 

ff = vlk1-2 (k~ ( ~ )  2 + k ~ ( ~ ) 2 ( r  -2 + ro-2)) 

The solutions of this system depend on the time as e (±i~- v~)t  if 

1 ~ (¢o2(r2+ro2)2)>0 ( L = I  4 k ~ 2 r ( ~ ) 2 ~  [~1 
= 4(r 2 + ro 2 ) Or k2~2r~ 

and as e (±~- vlao)t if 

-~(¢07"(r2 + ro2)2) < 0 

(4.1) 

Assume that inequality (4.2) is true. We will investigate the behaviour as t ~ oo of the perturbation 
u(y, a, t). Solving system (4.1) and omitting terms containing e (-~- vkzo)t, we obtain 

(k21 vk2o l / 1._~ e ~o(k )+  i -~ - (k  ) ei(Ky)dZk, 
u = 4 n  -k~ 

For simplicity, we will consider the behaviour of the perturbation on the wake axis, i.e. for y = 0. Chang- 
ing to polar coordinates p, 0 in the last integral, substituting p ~ z = p{(voT), expanding ~ o ( Z f l ( v ~ ) ) ,  
w0(zN(vot)) by Taylor's formula and evaluating the integral with respect to dz in the leading terms, we obtain 

l 2= ( sin0 ]l](0)e,X(0)(ff0(0)+ 
u~O) =8-~t ! k-eos0)o(0) 

4-~ ~ '0  ~ 'o  • 

The function ~,(0) has a non-degenerate maximum at 0 = ~/2 and 0 = 3rc/2. Using Laplace's method, 
we obtain 

u(0) = (0 e ;°t + O(t -~eX° ' ) ,  t --~ oo; C = 8v3Aa0~,2 ~ 

where the subscript zero means that the function in question is evaluated at 0 = r~/2. 

(4.2) 
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It follows from (4.3) that, when condition (4.2) is satisfied, the perturbation Uwill not only not decay 
but will increase exponentially as t -~ oo, regardless of the viscosity (note that I VSj I and the elements 
of the matrix F -1 are constant on trajectories of the free-stream flow). This effect--an energy jump in 
a jet--may be associated with the curvature of the streamlines of the free-stream flow; it is the curvature 
of the trajectories that enables the perturbation to "pick up" energy from the free-stream flow (as already 
remarked in Section 3; in flows with rectilinear trajectories the wake is damped). Note that when 
r 0 = 0 condition (4.2) is precisely Rayleigh's instability criterion (see, e.g. [13-16])--a condition that 
guarantees exponential growth of a three-dimensional short-wave perturbation in a two-dimensional 
radially symmetric flow V = r(o%. Of course, we are not concerned here with ordinary stability (in 
Lyaptmov's sense or in the linear approximation), since the problem is a steady-state one. At the same 
time, the effect of the wake increasing along a trajectory is similar to instability; it may possibly point 
to the "irregular" organization of the set of stationary points in the phase space of the Navier-Stokes 
dynamical system. 

Formula (4.3) also indicates a phenomenon in curved wakes: the longitudinal components of the 
velocity generate transverse components (only the reverse effect is observed in rectilinear flows; see 
Section 3). Under these conditions, the strongest growth in a spiral flow is that of the component u l - -  
the projection of the perturbation onto the radial direction. Thus, as the distance from the body in the 
flow increases, the wake is "pulled out" along the axis of the cylinder on which the spiral trajectory of 
the free-stream flow lies. 

R E F E R E N C E S  

1. MASLOV,, V. P., Coherent structures, resonances and asymptotic non-uniqueness for the Navier-Stokes equations at high 
Reynolds numbers. Uspekhi Mat Nauk, 1986, 41, 19-35. 

2. MASLOV, V. P.,Asymptotic Methods for Solving Pseudo-differential Equations. Nauka, Moscow, 1987. 
3. BLOEMBERGEN, N., Nonlinear Optics. Benjamin, New York, 1965. 
4. AKHMANOV,, S. ~ and KHOKHLOV, R. V., Problems of Non-linear Optics Veseoyu~ Inst. Nauch. Tekhn. Inform., Moscow, 

1964. 
5. MASLOV,, V. E and OMEL'YANOV, G. A., Interaction of three waves taking frequency-doubling effects into account. Izv. 

Vuzov. Fizika, 1986, 29, 3--23. 
6. MASLOV, V. E and OMEL'YANOV, G. A., Equations of the Kadomtsev-Pogutse type for a tokamak and for domains with 

arbitrary symmetry. Dok£ Ross. Alaut. Nauk, 1992, 326, 83-90. 
7. MASLOV, V.. P. and OMEL'YANOV, G. A., Rapidly oscillating asymptotic solutions of the equations of magnetohydro- 

dynamics in the tokamak approximation. Teoret. MaL Fiz., 1992, 92, 879--895. 
8. MASLOV, V.. E and OMEL'YANOV, G. A., Three-scale expansion of solutions of the equations of magnetohydrodynamics 

and Reynolds equation for a tokamak. Teoret. Mat. F/z., 1994, 98, 297-311. 
9. MASLOV, V. E and OMEL'YANOV, G. A., Fluctuation-generated tokamak pinch instabilities. Russ. J. Math. Phys., 1994, 

2, 463--485. 
10. KADOMTSEV, B. B. and POGUTSE, O. E, Non-linear spiral perturbations of plasma in a tokamak. Zh. Eksp. Teoret. Fiz., 

1973, 65, 575-589. 
11. PUSTOVITOV, V. D. and SHAFRANOV, V. D., Plasma equilibrium and plasma stability in stellarators. Voprosy Teor. Plazmy 

(EnergoatomizdaO, 1987, 15, 146--291. 
12. DOBROKHOTOV, S. Yu. and SHAFAREVICH, A. I., Parametrics and asymptotic forms of localized solutions of the 

Navier-Stokes equations in R 3, linearized on a smooth flow. Mat. Zametki, 1992, 51, 72-82. 
13. DOBROKHOTOV,, S. Yu. and SHAFAREVICH, A. I., Some asymptotic solutions of the finearized Navier-Stokes equations. 

MaL Zametki, 1993, 53, 25-35. 
14. SHAFAREVICH, A. I., The behaviour as t --* ~ of rapidly decreasing asymptotic solutions of the linearized Navier-Stokes 

equations. MaL Zametki, 1994, 55, 124-145. 
15. RAYLEIGH, J. W. 8., On the dynamics of revolving fluids. Proc. Roy. Soc. London Set A, 1917, 93, 148-154. 
16. BAYLY, B. J., Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Physics of Fluids, 1988, 31, 

56-64. 

Translated by D.L. 


